Multi-Grained Text-Guided Image Fusion for Multi-Exposure and Multi-Focus Scenarios
Abstract
Image fusion aims to synthesize a single high-quality image from a pair of inputs captured under challenging conditions, such as differing exposure levels or focal depths. A core challenge lies in effectively handling disparities in dynamic range and focus depth between the inputs. With the advent of vision–language models, recent methods incorporate textual descriptions as auxiliary guidance to enhance fusion quality. However, simply incorporating coarse-grained descriptions hampers the understanding of fine-grained details and poses challenges for precise cross-modal alignment. To address these limitations, we propose Multi-grained Text-guided Image Fusion (MTIF), a novel fusion paradigm with three key designs. First, it introduces multi-grained textual descriptions that separately capture fine details, structural cues, and semantic content, guiding image fusion through a hierarchical cross-modal modulation module. Second, it involves supervision signals at each granularity to facilitate alignment between visual and textual features and enhance the utility of auxiliary text. Third, it adopts a saliency-driven enrichment module to augment training data with dense semantic content, further strengthening the cross-modal modulation and alignment. Extensive experiments show that MTIF consistently outperforms previous methods on both multi-exposure and multi-focus image fusion tasks.